论文标题

一种用于计算无歧视保险价格的多任务网络方法

A multi-task network approach for calculating discrimination-free insurance prices

论文作者

Lindholm, Mathias, Richman, Ronald, Tsanakas, Andreas, Wüthrich, Mario V.

论文摘要

在预测建模的应用中,例如保险定价,间接或代理歧视是一个主要问题的问题。也就是说,存在一种受保护的保单持有人特征是通过预测模型暗中推断出的受保护的保单持有人特征的可能性,因此对价格产生了不良(或非法)的影响。解决此问题的技术解决方案依赖于使用所有保单持有人特征(包括受保护的人)建立最佳模型,然后平均为计算个人价格的受保护特征。但是,这种方法需要完全了解保单持有人的受保护特征,这本身可能是有问题的。在这里,我们通过使用多任务神经网络体系结构来解决此问题,以进行索赔预测,该预测只能使用有关受保护特征的部分信息进行培训,并且它产生的价格没有代理歧视。我们证明了提出的模型的使用,我们发现其预测精度与传统的前馈神经网络相媲美(完整信息)。但是,在部分缺失的保单持有人信息的情况下,这个多任务网络显然具有出色的性能。

In applications of predictive modeling, such as insurance pricing, indirect or proxy discrimination is an issue of major concern. Namely, there exists the possibility that protected policyholder characteristics are implicitly inferred from non-protected ones by predictive models, and are thus having an undesirable (or illegal) impact on prices. A technical solution to this problem relies on building a best-estimate model using all policyholder characteristics (including protected ones) and then averaging out the protected characteristics for calculating individual prices. However, such approaches require full knowledge of policyholders' protected characteristics, which may in itself be problematic. Here, we address this issue by using a multi-task neural network architecture for claim predictions, which can be trained using only partial information on protected characteristics, and it produces prices that are free from proxy discrimination. We demonstrate the use of the proposed model and we find that its predictive accuracy is comparable to a conventional feedforward neural network (on full information). However, this multi-task network has clearly superior performance in the case of partially missing policyholder information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源