论文标题
通过剪辑操纵反事实图像
Towards Counterfactual Image Manipulation via CLIP
论文作者
论文摘要
利用stylegan的表达性及其分离的潜在代码,现有方法可以实现对不同视觉属性的现实编辑,例如年龄和面部图像的性别。出现了一个有趣而又具有挑战性的问题:生成模型能否针对他们博学的先验进行反事实编辑?由于自然数据集中缺乏反事实样本,我们以文本驱动的方式研究了这个问题,并具有对比语言图像预言(剪辑),即使对于各种反事实概念,它们也可以提供丰富的语义知识。与内域操作不同,反事实操作需要更全面地剥削剪辑中的语义知识,以及对编辑方向的更微妙的处理,以避免卡在局部最低或不希望的编辑中。为此,我们设计了一种新颖的对比损失,该损失利用了预定义的夹子空间方向,从不同的角度将编辑指向所需的方向。此外,我们设计了一个简单而有效的方案,该方案将(目标文本)明确映射到潜在空间,并将其与潜在代码融合在一起,以进行有效的潜在代码优化和准确的编辑。广泛的实验表明,我们的设计在乘坐各种反事实概念的目标文本驾驶时,可以实现准确,现实的编辑。
Leveraging StyleGAN's expressivity and its disentangled latent codes, existing methods can achieve realistic editing of different visual attributes such as age and gender of facial images. An intriguing yet challenging problem arises: Can generative models achieve counterfactual editing against their learnt priors? Due to the lack of counterfactual samples in natural datasets, we investigate this problem in a text-driven manner with Contrastive-Language-Image-Pretraining (CLIP), which can offer rich semantic knowledge even for various counterfactual concepts. Different from in-domain manipulation, counterfactual manipulation requires more comprehensive exploitation of semantic knowledge encapsulated in CLIP as well as more delicate handling of editing directions for avoiding being stuck in local minimum or undesired editing. To this end, we design a novel contrastive loss that exploits predefined CLIP-space directions to guide the editing toward desired directions from different perspectives. In addition, we design a simple yet effective scheme that explicitly maps CLIP embeddings (of target text) to the latent space and fuses them with latent codes for effective latent code optimization and accurate editing. Extensive experiments show that our design achieves accurate and realistic editing while driving by target texts with various counterfactual concepts.