论文标题
通过阶段分解的模棱两可的表示
Equivariant Representation Learning via Class-Pose Decomposition
论文作者
论文摘要
我们介绍了一种与数据对称性相对的学习表示形式的通用方法。我们的核心思想是将潜在空间分解为不变因素和对称群体本身。这些组件在语义上分别对应于固有的数据类别,并构成姿势。基于相对对称信息的监督,对学习者的损失进行了培训。该方法是由群体理论的理论结果激励的,并保证了无损,可解释和分解的表示。我们通过涉及具有多种对称性的数据集的实验提供了实证研究。结果表明,我们的表示形式捕获了数据的几何形状,并且超过其他模棱两可的表示框架。
We introduce a general method for learning representations that are equivariant to symmetries of data. Our central idea is to decompose the latent space into an invariant factor and the symmetry group itself. The components semantically correspond to intrinsic data classes and poses respectively. The learner is trained on a loss encouraging equivariance based on supervision from relative symmetry information. The approach is motivated by theoretical results from group theory and guarantees representations that are lossless, interpretable and disentangled. We provide an empirical investigation via experiments involving datasets with a variety of symmetries. Results show that our representations capture the geometry of data and outperform other equivariant representation learning frameworks.