论文标题

LINDSOL:在机器人环境中进行几个射击对象学习的数据集

FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments

论文作者

P, Jishnu Jaykumar, Chao, Yu-Wei, Xiang, Yu

论文摘要

我们介绍了几个弹出的对象学习(LITESOL)数据集,以供对象识别,每个对象有几个图像。我们从不同视图中捕获了336个现实对象,每个对象都有9个RGB-D图像。提供对象分割掩码,对象姿势和对象属性。此外,使用330 3D对象模型生成的合成图像用于增强数据集。我们研究了(i)使用我们的数据集的最先进的方法,研究了(ii)(ii)使用最先进的方法,使用最先进的方法分类和几乎没有射击方法。评估结果表明,在机器人环境中,对于几个射击对象分类,仍有很大的边距可以改善。我们的数据集可用于研究一组少数几个对象识别问题,例如分类,检测和分割,形状重建,姿势估计,关键点对应关系和属性识别。该数据集和代码可在https://irvlutd.github.io/fewsol上找到。

We introduce the Few-Shot Object Learning (FewSOL) dataset for object recognition with a few images per object. We captured 336 real-world objects with 9 RGB-D images per object from different views. Object segmentation masks, object poses and object attributes are provided. In addition, synthetic images generated using 330 3D object models are used to augment the dataset. We investigated (i) few-shot object classification and (ii) joint object segmentation and few-shot classification with the state-of-the-art methods for few-shot learning and meta-learning using our dataset. The evaluation results show that there is still a large margin to be improved for few-shot object classification in robotic environments. Our dataset can be used to study a set of few-shot object recognition problems such as classification, detection and segmentation, shape reconstruction, pose estimation, keypoint correspondences and attribute recognition. The dataset and code are available at https://irvlutd.github.io/FewSOL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源