论文标题

生物运输网络作为自我调节过程的出现

Emergence of biological transportation networks as a self-regulated process

论文作者

Haskovec, Jan, Markowich, Peter, Portaro, Simone

论文摘要

我们研究了建模生物运输网络的自我调节过程。首先,我们为对称张量的扩散率$ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d $ d。引入规定的电势会导致Fokker-Planck方程,我们还为其熵耗散了,我们还调查了正式的$ l^2 $差异流。我们得出了耗散功能第二个变化的积分公式,证明了二次熵密度建模焦耳加热的凸度(依赖扩散张量)。最后,我们将泊松方程式融为一体,以获取电势获得Poisson-Nernst-Planck系统。得出了相关熵损失功能的形式梯度流,从而为$ d $耦合的演变方程与两个辅助椭圆形PDE提供了进化方程。

We study self-regulating processes modeling biological transportation networks. Firstly, we write the formal $L^2$-gradient flow for the symmetric tensor valued diffusivity $D$ of a broad class of entropy dissipations associated with a purely diffusive model. The introduction of a prescribed electric potential leads to the Fokker-Planck equation, for whose entropy dissipations we also investigate the formal $L^2$-gradient flow. We derive an integral formula for the second variation of the dissipation functional, proving convexity (in dependence of diffusivity tensor) for a quadratic entropy density modeling Joule heating. Finally, we couple in the Poisson equation for the electric potential obtaining the Poisson-Nernst-Planck system. The formal gradient flow of the associated entropy loss functional is derived, giving an evolution equation for $D$ coupled with two auxiliary elliptic PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源