论文标题

ABS-CAM:一种可解释的梯度优化方法,用于解释卷积神经网络

Abs-CAM: A Gradient Optimization Interpretable Approach for Explanation of Convolutional Neural Networks

论文作者

Zeng, Chunyan, Yan, Kang, Wang, Zhifeng, Yu, Yan, Xia, Shiyan, Zhao, Nan

论文摘要

深神经网络(DNN)的黑盒性质严重阻碍了其在特定场景中的性能改善和应用。近年来,基于类激活的方法已被广泛用于解释计算机视觉任务中模型的内部决策。但是,当此方法使用反向传播获得梯度时,它将在显着图中引起噪声,甚至定位与决策无关的特征。在本文中,我们提出了一种基于绝对值类激活映射(ABS-CAM)方法,该方法优化了从反向传播中得出的梯度,并将所有这些方法都转化为正梯度,以增强输出神经元激活的视觉特征,并提高显着性图的本地化能力。 ABS-CAM的框架分为两个阶段:生成初始显着性图并生成最终显着图。第一阶段通过优化梯度来提高显着性图的定位能力,第二阶段将初始显着性图与原始图像线性结合在一起,以增强显着性图的语义信息。我们对所提出的方法进行定性和定量评估,包括删除,插入和指向游戏。实验结果表明,ABS-CAM显然可以消除显着性图中的噪声,并且可以更好地找到与决策相关的功能,并且优于识别和本地化任务中的先前方法。

The black-box nature of Deep Neural Networks (DNNs) severely hinders its performance improvement and application in specific scenes. In recent years, class activation mapping-based method has been widely used to interpret the internal decisions of models in computer vision tasks. However, when this method uses backpropagation to obtain gradients, it will cause noise in the saliency map, and even locate features that are irrelevant to decisions. In this paper, we propose an Absolute value Class Activation Mapping-based (Abs-CAM) method, which optimizes the gradients derived from the backpropagation and turns all of them into positive gradients to enhance the visual features of output neurons' activation, and improve the localization ability of the saliency map. The framework of Abs-CAM is divided into two phases: generating initial saliency map and generating final saliency map. The first phase improves the localization ability of the saliency map by optimizing the gradient, and the second phase linearly combines the initial saliency map with the original image to enhance the semantic information of the saliency map. We conduct qualitative and quantitative evaluation of the proposed method, including Deletion, Insertion, and Pointing Game. The experimental results show that the Abs-CAM can obviously eliminate the noise in the saliency map, and can better locate the features related to decisions, and is superior to the previous methods in recognition and localization tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源