论文标题

调制空间,与特殊仿射傅里叶变换相关的乘数

Modulation spaces, multipliers associated with the special affine Fourier transform

论文作者

Biswas, M. H. A., Feichtinger, H. G., Ramakrishnan, R.

论文摘要

我们研究了与傅立叶分析和时频分析有关的特殊仿射傅立叶变换(SAFT)的一些基本特性。我们引入了调制空间$ \ boldsymbol {m}^{r,s} _a $与saft相关,并证明,如果新调制空间之间的有界线性运算符,则使用$ a $ translation通勤,那么它是$ a $ a $ - 转换运算符。我们还建立了与SAFT相关的Hörmander乘数定理和Littlewood-Paley定理。

We study some fundamental properties of the special affine Fourier transform (SAFT) in connection with the Fourier analysis and time-frequency analysis. We introduce the modulation space $\boldsymbol {M}^{r,s}_A$ in connection with SAFT and prove that if a bounded linear operator between new modulation spaces commutes with $A$-translation, then it is a $A$-convolution operator. We also establish Hörmander multiplier theorem and Littlewood-Paley theorem associated with the SAFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源