论文标题

基于代理的深度度量学习的非等于概率的概率

A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning

论文作者

Kirchhof, Michael, Roth, Karsten, Akata, Zeynep, Kasneci, Enkelejda

论文摘要

基于代理的深度度量学习(DML)通过嵌入与班级代表(代理)接近的图像(通常相对于它们之间的角度)来学习深度表示。但是,这无视嵌入规范,该规范可以带有其他有益的环境,例如类或图像 - 内在不确定性。此外,基于代理的DML努力学习课堂内部结构。为了立即解决这两个问题,我们引入了基于非各向异性概率的DML。我们将图像模拟为高超球的定向von mises-fisher(VMF)分布,可以反映图像内部不确定性。此外,我们为类代理提供了非异向von mises-fisher(NIVMF)分布,以更好地表示复杂的特定于类别的方差。为了衡量这些模型之间的代理到图像距离,我们开发并研究了多个分布对点和分布到分布指标。每种框架选择都是由一系列消融研究激励的,这些研究介绍了我们对基于代理的DML的概率方法的有益特性,例如不确定性意识,在培训期间较好的梯度以及总体改善的概括性能。后者尤其反映在标准DML基准测试上的竞争性能中,我们的方法可以进行比较,这表明现有的基于代理的DML可以从更概率的治疗中受益匪浅。代码可在github.com/explainableml/probabilistis_deep_metric_learning上找到。

Proxy-based Deep Metric Learning (DML) learns deep representations by embedding images close to their class representatives (proxies), commonly with respect to the angle between them. However, this disregards the embedding norm, which can carry additional beneficial context such as class- or image-intrinsic uncertainty. In addition, proxy-based DML struggles to learn class-internal structures. To address both issues at once, we introduce non-isotropic probabilistic proxy-based DML. We model images as directional von Mises-Fisher (vMF) distributions on the hypersphere that can reflect image-intrinsic uncertainties. Further, we derive non-isotropic von Mises-Fisher (nivMF) distributions for class proxies to better represent complex class-specific variances. To measure the proxy-to-image distance between these models, we develop and investigate multiple distribution-to-point and distribution-to-distribution metrics. Each framework choice is motivated by a set of ablational studies, which showcase beneficial properties of our probabilistic approach to proxy-based DML, such as uncertainty-awareness, better-behaved gradients during training, and overall improved generalization performance. The latter is especially reflected in the competitive performance on the standard DML benchmarks, where our approach compares favorably, suggesting that existing proxy-based DML can significantly benefit from a more probabilistic treatment. Code is available at github.com/ExplainableML/Probabilistic_Deep_Metric_Learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源