论文标题

在不确定性下使用分位数预测进行活性分布网格的动态当量

Using Quantile Forecasts for Dynamic Equivalents of Active Distribution Grids under Uncertainty

论文作者

Vorwerk, Johanna, Zufferey, Thierry, Aristidou, Petros, Hug, Gabriela

论文摘要

尽管分销网络(DNS)从消费者转向积极且响应迅速的智能DNS,但如何在大规模传输网络(TN)研究中代表它们的问题仍在研究中。使用汇总模型用于逆变器交换生成和常规负载模型的标准方法为可能导致不稳定性的动态建模带来了重大错误。本文提出了一种基于分位预测的新方法,以表示源自TN级别DNS的不确定性。首先,我们采用DN的蒙特卡洛模拟来绘制所需的丰富数据集。然后,我们使用机器学习(ML)算法不仅可以预测最可能的响应,还可以以预定义的置信度预测潜在响应的间隔。这些分位方法代表TN级别DN响应的方差。结果表明大多数ML技术的表现出色。调谐的分位数等效物可预测TN/DN接口处电流的准确频带,并且具有看不见的TN条件的测试表明稳健性。将MC轨迹与预测间隔进行比较的最终评估突出了所提出的方法的潜力。

While distribution networks (DNs) turn from consumers to active and responsive intelligent DNs, the question of how to represent them in large-scale transmission network (TN) studies is still under investigation. The standard approach that uses aggregated models for the inverter-interfaced generation and conventional load models introduces significant errors to the dynamic modeling that can lead to instabilities. This paper presents a new approach based on quantile forecasting to represent the uncertainty originating in DNs at the TN level. First, we aquire a required rich dataset employing Monte Carlo simulations of a DN. Then, we use machine learning (ML) algorithms to not only predict the most probable response but also intervals of potential responses with predefined confidence. These quantile methods represent the variance in DN responses at the TN level. The results indicate excellent performance for most ML techniques. The tuned quantile equivalents predict accurate bands for the current at the TN/DN-interface, and tests with unseen TN conditions indicate robustness. A final assessment that compares the MC trajectories against the predicted intervals highlights the potential of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源