论文标题
侦察兵:通过时空变压器的合成反事实,用于可行的医疗保健
SCouT: Synthetic Counterfactuals via Spatiotemporal Transformers for Actionable Healthcare
论文作者
论文摘要
合成控制方法开创了一类强大的数据驱动技术,以估计捐赠者单位的单元的反事实现实。从本质上讲,该技术涉及在干预前时期安装的线性模型,该模型结合了供体结果以产生反事实。但是,使用时间不足的权重在每个时间实例上线性组合空间信息都无法捕获重要的单位间和单位内的时间上下文以及实际数据的复杂非线性动力学。相反,我们提出了一种在干预开始之前使用局部时空信息作为估计反事实序列的有希望的方法的方法。为此,我们建议了一个变压器模型,该模型利用特定的位置嵌入,修改的解码器掩模以及一项新的预训练任务来执行时空序列到序列建模。我们对合成数据的实验证明了我们方法在典型的小型供体池设置中的功效及其对噪声的鲁棒性。我们还通过模拟全州范围的公共卫生政策来评估其有效性,对哮喘药物进行支持,以支持随机对照试验的疾病,以及针对弗里德雷希共济失调患者的医疗干预,以改善临床决策和促进个性化疗法,从而在人口和患者水平上产生可行的医疗保健见解。
The Synthetic Control method has pioneered a class of powerful data-driven techniques to estimate the counterfactual reality of a unit from donor units. At its core, the technique involves a linear model fitted on the pre-intervention period that combines donor outcomes to yield the counterfactual. However, linearly combining spatial information at each time instance using time-agnostic weights fails to capture important inter-unit and intra-unit temporal contexts and complex nonlinear dynamics of real data. We instead propose an approach to use local spatiotemporal information before the onset of the intervention as a promising way to estimate the counterfactual sequence. To this end, we suggest a Transformer model that leverages particular positional embeddings, a modified decoder attention mask, and a novel pre-training task to perform spatiotemporal sequence-to-sequence modeling. Our experiments on synthetic data demonstrate the efficacy of our method in the typical small donor pool setting and its robustness against noise. We also generate actionable healthcare insights at the population and patient levels by simulating a state-wide public health policy to evaluate its effectiveness, an in silico trial for asthma medications to support randomized controlled trials, and a medical intervention for patients with Friedreich's ataxia to improve clinical decision-making and promote personalized therapy.