论文标题

具有多党同型加密的分散深度学习隐私化的深度学习

Privacy-preserving Decentralized Deep Learning with Multiparty Homomorphic Encryption

论文作者

Xu, Guowen, Li, Guanlin, Guo, Shangwei, Zhang, Tianwei, Li, Hongwei

论文摘要

分散的深度学习在协作模型培训中起着关键作用,因为它的特性很有吸引力,包括容忍高网络潜伏期和较不愿容易出现单点失败。不幸的是,与其他分布式培训框架相比,这种培训模式更容易受到数据隐私泄漏的影响。现有的努力专门利用差异隐私作为减轻数据隐私威胁的基石。但是,由于其固有的矛盾,差异隐私是否可以为模型培训提供令人满意的公用事业私人关系权衡。为了解决这个问题,我们提出了D-MHE,这是第一个安全有效的分散培训框架,具有无损精度。受同态加密技术的最新发展的启发,我们设计了最先进的加密系统之一Brakerski-Fan-Vercauteren(BFV)的多方版本,并使用IT来实现用户界模型的私人梯度更新。 D-MHE可以将一般安全多方计算(MPC)任务的通信复杂性从用户数量的二次进行线性降低,从而使其非常适合大规模分散的学习系统。此外,即使大多数用户对勾结不诚实,D-MHE也提供了严格的语义安全保护。我们对MNIST和CIFAR-10数据集进行了广泛的实验,以证明与现有方案相比,在模型准确性,计算和通信成本方面,D-MHE的优越性。

Decentralized deep learning plays a key role in collaborative model training due to its attractive properties, including tolerating high network latency and less prone to single-point failures. Unfortunately, such a training mode is more vulnerable to data privacy leaks compared to other distributed training frameworks. Existing efforts exclusively use differential privacy as the cornerstone to alleviate the data privacy threat. However, it is still not clear whether differential privacy can provide a satisfactory utility-privacy trade-off for model training, due to its inherent contradictions. To address this problem, we propose D-MHE, the first secure and efficient decentralized training framework with lossless precision. Inspired by the latest developments in the homomorphic encryption technology, we design a multiparty version of Brakerski-Fan-Vercauteren (BFV), one of the most advanced cryptosystems, and use it to implement private gradient updates of users'local models. D-MHE can reduce the communication complexity of general Secure Multiparty Computation (MPC) tasks from quadratic to linear in the number of users, making it very suitable and scalable for large-scale decentralized learning systems. Moreover, D-MHE provides strict semantic security protection even if the majority of users are dishonest with collusion. We conduct extensive experiments on MNIST and CIFAR-10 datasets to demonstrate the superiority of D-MHE in terms of model accuracy, computation and communication cost compared with existing schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源