论文标题

对具有关键耐力潜力的Schrödinger操作员的热和马丁内核估计

Heat and Martin kernel estimates for Schrödinger operators with critical Hardy potentials

论文作者

Barbatis, Gerassimos, Gkikas, Konstantinos T., Tertikas, Achilles

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $Ω$ be a bounded domain in $\mathbb{R}^N$ with $C^2$ boundary and let $K\subset\partialΩ$ be either a $C^2$ submanifold of the boundary of codimension $k<N$ or a point. In this article we study various problems related to the Schrödinger operator $L_μ =-Δ- μd_K^{-2}$ where $d_K$ denotes the distance to $K$ and $μ\leq k^2/4$. We establish parabolic boundary Harnack inequalities as well as related two-sided heat kernel and Green function estimates. We construct the associated Martin kernel and prove existence and uniqueness for the corresponding boundary value problem with data given by measures. Next we apply the results to the study of $L_μu+g(u) = 0$ and establish existence and uniqueness under suitable assumptions on the function $g$. To prove our results we introduce among other things a suitable notion of boundary trace. This trace is different from the one used by Marcus and Nguyen \cite{MT} thus allowing us to cover the whole range $μ\leq k^2/4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源