论文标题
混合Bloch-néel的螺旋状态Mn $ _ {1.4} $ PTSN由resonant soft x射线散射探测
Hybrid Bloch-Néel spiral states in Mn$_{1.4}$PtSn probed by resonant soft x-ray scattering
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Multiple intriguing phenomena have recently been discovered in tetragonal Heusler compounds, where $D_{2d}$ symmetry sets a unique interplay between Dzyaloshinskii-Moriya (DM) and magnetic dipolar interactions. In the prototype $D_{2d}$ compound Mn$_{1.4}$PtSn, this has allowed the stabilization of exotic spin textures such as first-reported anti-skyrmions or elliptic Bloch-type skyrmions. While less attention has so far been given to the low-field spiral state, this remains extremely interesting as a simplest phase scenario on which to investigate the complex hierarchy of magnetic interactions in this materials family. Here, via resonant small-angle soft x-ray scattering experiments on high-quality single crystals of Mn$_{1.4}$PtSn at low temperatures, we evidence how the underlying $D_{2d}$ symmetry of the DMI in this material is reflected in its magnetic texture. Our studies reveal the existence of a novel and complex metastable phase, which possibly has a mixed character of both the Néel-type cycloid and the Bloch-type helix, that forms at low temperature in zero fields upon the in-plane field training. This hybrid spin-spiral structure has a remarkable tunability, allowing to tilt its orientation beyond high-symmetry crystallographic directions and control its spiral period. These results broaden the reachness of Heusler $D_{2d}$ materials exotic magnetic phase diagram and extend its tunability, thus enhancing a relevant playground for further fundamental explorations and potential applications in energy saving technologies.