论文标题
质量和弹簧二聚体Fermi-Pasta-ulam-tsingou纳米翅膀,呈指数型不变的涟漪
Mass and spring dimer Fermi-Pasta-Ulam-Tsingou nanopterons with exponentially small, nonvanishing ripples
论文作者
论文摘要
我们在长波极限的质量和弹簧二聚体Fermi-Pasta-tsingou(fput)晶格中研究了行进波。已知这种晶格在相对位移坐标中具有纳米翅目流动波。这些纳米翅目曲线由指数局部的“核心”的叠加组成,该构图接近KDV孤立波和周期性的“波纹”,其幅度较小,超出了长波参数的所有代数阶,尽管零幅度未被遗弃。在这里,我们采用了空间动力学技术,灵感来自IOOSS和KIRCHGässner,IOOSS和James,以及Venney和Zimmer的结果,以构建质量和弹簧二聚体纳米翅膀,其涟漪的涟漪呈指数型且不涉及。我们首先在原始位置坐标中获得“生长前”行进波,然后传递到相对位移。为了研究位置,我们将其波动波问题重新列入了无限二维Banach空间上的一阶方程。然后,我们提出假设,即当满足时,允许我们将这样的一阶问题减少到伦巴第解决的假设。然后,我们的分析的关键部分是从简化的问题回到原始问题。我们的假设使我们免于严格与晶格合作,但很容易检查是否有FPUT质量和弹簧二聚体。我们还提供了伦巴第方法的详细说明和重新诠释,以说明我们的假设如何与他的技术协同工作,并提供了与当前方法相似性和与当前方法的相似性和差异的先前方法。
We study traveling waves in mass and spring dimer Fermi-Pasta-Ulam-Tsingou (FPUT) lattices in the long wave limit. Such lattices are known to possess nanopteron traveling waves in relative displacement coordinates. These nanopteron profiles consist of the superposition of an exponentially localized "core," which is close to a KdV solitary wave, and a periodic "ripple," whose amplitude is small beyond all algebraic orders of the long wave parameter, although a zero amplitude is not precluded. Here we deploy techniques of spatial dynamics, inspired by results of Iooss and Kirchgässner, Iooss and James, and Venney and Zimmer, to construct mass and spring dimer nanopterons whose ripples are both exponentially small and also nonvanishing. We first obtain "growing front" traveling waves in the original position coordinates and then pass to relative displacement. To study position, we recast its traveling wave problem as a first-order equation on an infinite-dimensional Banach space; then we develop hypotheses that, when met, allow us to reduce such a first-order problem to one solved by Lombardi. A key part of our analysis is then the passage back from the reduced problem to the original one. Our hypotheses free us from working strictly with lattices but are easily checked for FPUT mass and spring dimers. We also give a detailed exposition and reinterpretation of Lombardi's methods, to illustrate how our hypotheses work in concert with his techniques, and we provide a dialogue with prior methods of constructing FPUT nanopterons, to expose similarities and differences with the present approach.