论文标题

重新思考梯度权重对显着性图估计的影响

Rethinking gradient weights' influence over saliency map estimation

论文作者

Fahim, Masud An Nur Islam, Saqib, Nazmus, Siam, Shafkat Khan, Jung, Ho Yub

论文摘要

类激活图(CAM)有助于制定显着图,有助于解释深度神经网络的预测。基于梯度的方法通常比视力解释性的其他分支更快,而独立于人类的指导。类似CAM的研究的性能取决于管理模型的层响应以及梯度的影响。典型的面向梯度的CAM研究依赖加权聚合来进行显着图估计,通过将梯度图投影到单权重值中,这可能导致过度的广义显着图。为了解决这个问题,我们使用全球指导图来纠正显着性估计过程中加权的聚合操作,在这种情况下,由此产生的解释相对干净且特定于实例。我们通过在特征图及其相应的梯度图之间执行元素乘法来获得全局指导图。为了验证我们的研究,我们将拟议的研究与八个不同的显着性可视化器进行了比较。此外,我们使用七个常用的评估指标进行定量比较。提出的方案比ImageNet,MS-Coco 14和Pascal VOC 2012数据集的测试图像取得了重大改进。

Class activation map (CAM) helps to formulate saliency maps that aid in interpreting the deep neural network's prediction. Gradient-based methods are generally faster than other branches of vision interpretability and independent of human guidance. The performance of CAM-like studies depends on the governing model's layer response, and the influences of the gradients. Typical gradient-oriented CAM studies rely on weighted aggregation for saliency map estimation by projecting the gradient maps into single weight values, which may lead to over generalized saliency map. To address this issue, we use a global guidance map to rectify the weighted aggregation operation during saliency estimation, where resultant interpretations are comparatively clean er and instance-specific. We obtain the global guidance map by performing elementwise multiplication between the feature maps and their corresponding gradient maps. To validate our study, we compare the proposed study with eight different saliency visualizers. In addition, we use seven commonly used evaluation metrics for quantitative comparison. The proposed scheme achieves significant improvement over the test images from the ImageNet, MS-COCO 14, and PASCAL VOC 2012 datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源