论文标题

dateformer:长期系列预测的时间模型变压器

Dateformer: Time-modeling Transformer for Longer-term Series Forecasting

论文作者

Young, Julong, Chen, Junhui, Huang, Feihu, Peng, Jian

论文摘要

在长期序列预测中,变压器表现出了令人印象深刻的力量。 现有的预测研究主要集中在将过去的简短系列(BeackBack窗口)映射到未来系列(预测窗口)。培训完成后,较长的培训数据集时间序列将被丢弃。模型只能依靠回顾窗口信息进行推理,从而阻碍了从全局角度分析时间序列的模型。而且这些由变压器使用的窗口非常狭窄,因为它们必须在其中的每个时间步骤建模。在这种点的处理方式下,宽阔的窗户将迅速耗尽其模型容量。对于细粒度的时间序列而言,这将导致信息输入和预测输出的瓶颈,这是长期序列预测的致命。为了克服障碍,我们提出了一种全新的方法,将变压器用于时间序列预测。具体而言,我们按日按时间序列分为贴片,并将其改革为贴片处理,从而大大增强了变压器的信息输入和输出。为了进一步帮助模型在推理期间利用整个培训集的全球信息,我们将信息提炼,将其存储在时间表示中,并用时间表示将序列替换为主要建模实体。我们设计的时间建模变压器 - dateFormer在7个现实世界数据集上产生最先进的准确性,相对改进为33.6 \%,并将最大预测范围扩展到半年。

Transformers have demonstrated impressive strength in long-term series forecasting. Existing prediction research mostly focused on mapping past short sub-series (lookback window) to future series (forecast window). The longer training dataset time series will be discarded, once training is completed. Models can merely rely on lookback window information for inference, which impedes models from analyzing time series from a global perspective. And these windows used by Transformers are quite narrow because they must model each time-step therein. Under this point-wise processing style, broadening windows will rapidly exhaust their model capacity. This, for fine-grained time series, leads to a bottleneck in information input and prediction output, which is mortal to long-term series forecasting. To overcome the barrier, we propose a brand-new methodology to utilize Transformer for time series forecasting. Specifically, we split time series into patches by day and reform point-wise to patch-wise processing, which considerably enhances the information input and output of Transformers. To further help models leverage the whole training set's global information during inference, we distill the information, store it in time representations, and replace series with time representations as the main modeling entities. Our designed time-modeling Transformer -- Dateformer yields state-of-the-art accuracy on 7 real-world datasets with a 33.6\% relative improvement and extends the maximum forecast range to half-year.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源