论文标题

$ω(2012)$作为手性夸克模型中的分子的分析

Analysis of $Ω(2012)$ as a molecule in the chiral quark model

论文作者

Hu, Xiaohuang, Ping, Jialun

论文摘要

受Belle Collaboration的$ω(2012)$的更新信息的启发,我们对带有Quark内容的所有可能的$ S $ s $ - 波特pentaquark Systems进行了$ sssq \ bar {q},q = u,d $,在chiral Quark型号中,并在高斯Quussian扩展方法的帮助下进行。还考虑了频道耦合。实时缩放方法(稳定方法)用于识别和检查结合状态和真正的共振。此外,给出了所有共振的衰减宽度。结果表明,$ω(2012)$可以解释为$ξ^*k $分子状态,其量子数为$ ij^p = 0(\ frac {3} {2} {2})^ - $。获得了其他共鸣:$ ij^p = 0(\ frac {1} {2})^ - $和$ 0(\ frac {3} {2} {2} {2})^ - $,$ωπ$带有$ ij^p = 1(\ frac = 1)预计将在未来的实验中进一步验证这些五夸克州。

Inspired by the updated information on $Ω(2012)$ by the Belle Collaboration, we conduct a study of all possible $S$-wave pentaquark systems with quark contents $sssq\bar{q},q=u,d$ in a chiral quark model with the help of Gaussian expansion method. Channel coupling is also considered. The real-scaling method (stabilization method) is employed to identify and check the bound states and the genuine resonances. In addition, the decay widths of all resonances are given. The results show that $Ω(2012)$ can be interpreted as a $Ξ^*K$ molecular state with quantum number of $IJ^P=0(\frac{3}{2})^-$. Other resonances are obtained: $Ξ^* K^*$ with $IJ^P=0(\frac{1}{2})^-$ and$0(\frac{3}{2})^-$, $Ωπ$ with $IJ^P=1(\frac{3}{2})^-$. These pentaquark states is expected to be further verified in future experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源