论文标题

多个内核聚类,双噪声最小化

Multiple Kernel Clustering with Dual Noise Minimization

论文作者

Zhang, Junpu, Li, Liang, Wang, Siwei, Liu, Jiyuan, Liu, Yue, Liu, Xinwang, Zhu, En

论文摘要

聚类是一种代表性的无监督方法,广泛应用于多模式和多视图方案。多个内核聚类(MKC)旨在通过集成基本内核的互补信息来分组数据。作为代表,晚期Fusion MKC首先将内核分解为正交分区矩阵,然后从中学习一个共识,最近实现了有希望的表现。但是,这些方法无法考虑分区矩阵内部的噪声,从而阻止了聚类性能的进一步改善。我们发现噪声可以分解为可分离的双部分,即n-noise和c-noise(空空间噪声和柱空间噪声)。在本文中,我们严格地定义了双噪声,并通过最小化新颖的无参数MKC算法提出了新颖的MKC算法。为了解决最终的优化问题,我们设计了有效的两步迭代策略。据我们所知,这是第一次研究内核空间中分区中的双重噪声。我们观察到双噪声会污染块对角结构并产生聚类性能的变性,而C-Noise比N-Noise表现出更大的破坏。由于我们的有效机制可以最大程度地减少双重噪声,因此所提出的算法超过了最新的方法。

Clustering is a representative unsupervised method widely applied in multi-modal and multi-view scenarios. Multiple kernel clustering (MKC) aims to group data by integrating complementary information from base kernels. As a representative, late fusion MKC first decomposes the kernels into orthogonal partition matrices, then learns a consensus one from them, achieving promising performance recently. However, these methods fail to consider the noise inside the partition matrix, preventing further improvement of clustering performance. We discover that the noise can be disassembled into separable dual parts, i.e. N-noise and C-noise (Null space noise and Column space noise). In this paper, we rigorously define dual noise and propose a novel parameter-free MKC algorithm by minimizing them. To solve the resultant optimization problem, we design an efficient two-step iterative strategy. To our best knowledge, it is the first time to investigate dual noise within the partition in the kernel space. We observe that dual noise will pollute the block diagonal structures and incur the degeneration of clustering performance, and C-noise exhibits stronger destruction than N-noise. Owing to our efficient mechanism to minimize dual noise, the proposed algorithm surpasses the recent methods by large margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源