论文标题

与3D顺序数据的伪标记的一致性教师

Teachers in concordance for pseudo-labeling of 3D sequential data

论文作者

Gebrehiwot, Awet Haileslassie, Vacek, Patrik, Hurych, David, Zimmermann, Karel, Perez, Patrick, Svoboda, Tomáš

论文摘要

自动伪标记是一种强大的工具,可以利用大量连续的未标记数据。它在自主驾驶的关键安全应用中特别具有吸引力,在绩效要求非常大,数据集很大,并且手动标记非常具有挑战性。我们建议利用点云的序列来通过培训多个教师来提高教师安装中的伪标记技术,每个教师都可以访问不同的时间信息。这套被称为和解的教师比标准方法为学生培训提供了更高质量的伪标签。多个教师的输出通过新颖的伪标记信心引导的标准组合。我们的实验评估着重于3D点云领域和城市驾驶场景。我们显示了在三个基准数据集上应用于3D语义分割和3D对象检测的方法的性能。我们的方法仅使用20%的手动标签,优于一些完全监督的方法。对于很少出现在培训数据中的课程,可以实现明显的表现。

Automatic pseudo-labeling is a powerful tool to tap into large amounts of sequential unlabeled data. It is specially appealing in safety-critical applications of autonomous driving, where performance requirements are extreme, datasets are large, and manual labeling is very challenging. We propose to leverage sequences of point clouds to boost the pseudolabeling technique in a teacher-student setup via training multiple teachers, each with access to different temporal information. This set of teachers, dubbed Concordance, provides higher quality pseudo-labels for student training than standard methods. The output of multiple teachers is combined via a novel pseudo label confidence-guided criterion. Our experimental evaluation focuses on the 3D point cloud domain and urban driving scenarios. We show the performance of our method applied to 3D semantic segmentation and 3D object detection on three benchmark datasets. Our approach, which uses only 20% manual labels, outperforms some fully supervised methods. A notable performance boost is achieved for classes rarely appearing in training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源