论文标题

渐近双曲线端和距离估计值的质量

The mass of an asymptotically hyperbolic end and distance estimates

论文作者

Chai, Xiaoxiang, Wan, Xueyuan

论文摘要

Let $(M,g)$ be a complete connected $n$-dimensional Riemannian spin manifold without boundary such that the scalar curvature satisfies $R_g\geq -n(n-1)$ and $\mathcal{E}\subset M$ be an asymptotically hyperbolic end, we prove that the mass functional of the end $\mathcal{E}$ is timelike future-directed or 零。此外,当且仅当$(m,g)$与双曲线空间等值时,它会消失。我们还考虑了一个渐近边界的渐近双曲线歧管的质量,如果边界的平均曲率通过使用距离估计的函数定义的函数,则证明质量是定时指导的。作为一种应用,如果边界的平均曲率从下方限制为$ - (n-1)$或标量曲率满足$ r_g \ geq(-1+κ)n(n-1)$,那么任何正常常数$κ$小于一个。

Let $(M,g)$ be a complete connected $n$-dimensional Riemannian spin manifold without boundary such that the scalar curvature satisfies $R_g\geq -n(n-1)$ and $\mathcal{E}\subset M$ be an asymptotically hyperbolic end, we prove that the mass functional of the end $\mathcal{E}$ is timelike future-directed or zero. Moreover, it vanishes if and only if $(M,g)$ is isometric to the hyperbolic space. We also consider the mass of an asymptotically hyperbolic manifold with compact boundary, we prove the mass is timelike future-directed if the mean curvature of the boundary is bounded from below by a function defined using distance estimates. As an application, the mass is timelike future-directed if the mean curvature of the boundary is bounded from below by $-(n-1)$ or the scalar curvature satisfies $R_g\geq (-1+κ)n(n-1)$ for any positive constant $κ$ less than one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源