论文标题

介电弹性体的最佳控制多体动力学系统

Optimal control of dielectric elastomer actuated multibody dynamical systems

论文作者

Huang, Dengpeng, Leyendecker, Sigrid

论文摘要

在这项工作中,介绍了用于最佳控制介电弹性弹性弹性的柔性多体动力学系统的仿真模型。介电弹性体执行器(DEA)的行为就像软机器人中的灵活人造肌肉。它被建模为机电耦合的几何精确光束,在该光束中,电荷充当控制变量。 DEA梁被整合为由刚性和柔性组件组成的多体系统中的执行器。该模型还代表了通过光束执行器和例如(例如。在软机器人的抓握过程中,一个刚性的身体。专门针对DEA,为Cosserat束提供了连接的电位位移和应变样的电动变量。通过数学上的简洁且具有物理代表性的配方,为梁DEA开发了降低的自由能函数。在最佳控制问题中,将目标函数最小化,而多体系统的动态平衡方程必须与接触和边界条件的互补条件一起实现。最佳控制问题通过直接转录方法解决,将其转换为受约束的非线性优化问题。首先将光束用一维有限元元素半颗粒,然后用变异积分器将多体动力学在时间上离散,从而导致离散的Euler-Lagrange方程,并通过空空间投影进一步降低。离散的Euler-Lagrange方程和边界条件是平等约束,而触点约束在优化离散目标时被视为不平等约束。开发模型的有效性通过三个数值示例,包括悬臂梁,软机器人蠕虫和软毛力。

In this work, a simulation model for the optimal control of dielectric elastomer actuated flexible multibody dynamics systems is presented. The Dielectric Elastomer Actuator (DEA) behaves like a flexible artificial muscles in soft robotics. It is modeled as an electromechanically coupled geometrically exact beam, where the electric charges serve as control variables. The DEA-beam is integrated as an actuator into multibody systems consisting of rigid and flexible components. The model also represents contact interaction via unilateral constraints between the beam actuator and e.g. a rigid body during the grasping process of a soft robot. Specifically for the DEA, a work conjugated electric displacement and strain-like electric variables are derived for the Cosserat beam. With a mathematically concise and physically representative formulation, a reduced free energy function is developed for the beam-DEA. In the optimal control problem, an objective function is minimized while the dynamic balance equations for the multibody system have to be fulfilled together with the complementarity conditions for the contact and boundary conditions. The optimal control problem is solved via a direct transcription method, transforming it into a constrained nonlinear optimization problem. The beam is firstly semidiscretized with 1D finite elements and then the multibody dynamics is temporally discretized with a variational integrator leading to the discrete Euler-Lagrange equations, which are further reduced with the null space projection. The discrete Euler-Lagrange equations and the boundary conditions serve as equality constraints, whereas the contact constraints are treated as inequality constraints in the optimization of the discretized objective. The effectiveness of the developed model is demonstrated by three numerical examples, including a cantilever beam, a soft robotic worm and a soft grasper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源