论文标题

在存在反向平方电位的情况下,对Minkowski空间的价格定律

Price's law on Minkowski space in the presence of an inverse square potential

论文作者

Baskin, Dean, Gell-Redman, Jesse, Marzuola, Jeremy L.

论文摘要

我们考虑了两个模型单数设置中的溶液对波型方程的趋于衰减。我们的主要结果是(3+1)维度中无质量狄拉克 - 库仑系统解决方案的价格定律的一种形式。使用相同的技术,我们证明了Minkowski空间上具有反向平方电位的波浪方程的类似定理。这些奇异模型的一个新功能是,解决方案在两个方案中表现出两个不同的领先衰减速率,其区别是沿曲线沿曲线的空间动量接近序列式无穷大的无穷大还是非零。我们分析的一个重要特征是,它在这两个区域的界面上得出了解决方案的精确描述,该区域构成了整个时尚无穷大。

We consider the pointwise decay of solutions to wave-type equations in two model singular settings. Our main result is a form of Price's law for solutions of the massless Dirac-Coulomb system in (3+1)-dimensions. Using identical techniques, we prove a similar theorem for the wave equation on Minkowski space with an inverse square potential. One novel feature of these singular models is that solutions exhibit two different leading decay rates at timelike infinity in two regimes, distinguished by whether the spatial momentum along a curve which approaches timelike infinity is zero or non-zero. An important feature of our analysis is that it yields a precise description of solutions at the interface of these two regions which comprise the whole of timelike infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源