论文标题
部分可观测时空混沌系统的无模型预测
Soil Erosion in the United States. Present and Future (2020-2050)
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Soil erosion is a significant threat to the environment and long-term land management around the world. Accelerated soil erosion by human activities inflicts extreme changes in terrestrial and aquatic ecosystems, which is not fully surveyed/predicted for the present and probable future at field-scales (30-m). Here, we estimate/predict soil erosion rates by water erosion, (sheet and rill erosion), using three alternative (2.6, 4.5, and 8.5) Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios across the contiguous United States. Field Scale Soil Erosion Model (FSSLM) estimations rely on a high resolution (30-m) G2 erosion model integrated by satellite- and imagery-based estimations of land use and land cover (LULC), gauge observations of long-term precipitation, and scenarios of the Coupled Model Intercomparison Project Phase 6 (CMIP6). The baseline model (2020) estimates soil erosion rates of 2.32 Mg ha 1 yr 1 with current agricultural conservation practices (CPs). Future scenarios with current CPs indicate an increase between 8% to 21% under different combinations of SSP-RCP scenarios of climate and LULC changes. The soil erosion forecast for 2050 suggests that all the climate and LULC scenarios indicate either an increase in extreme events or a change in the spatial location of extremes largely from the southern to the eastern and northeastern regions of the United States.