论文标题
在Qubit-cavity Quantum-Field-Field理论互动中的变形和Landauer的原理
Decoherence and Landauer's Principle in Qubit-Cavity Quantum-Field-Theory Interaction
论文作者
论文摘要
我们考虑量子降压和兰道的原理在Qubit-cavity量子场理论(QFT)相互作用中,将量子视为系统和空腔QFT作为环境。特别是,我们调查了系统中纯净的初始状态和环境的系统发生的变化,无论是否有能量耗散,并将结果与系统的初始状态是混合状态的情况进行比较。当我们选择一种相互作用的汉密尔顿人,使系统的能量和连贯性同时变化时,当初始状态混合时,系统的种群变化和能量变化是相同的。然而,分解项增加了系统的von Neumann熵。在这种情况下,系统的能量变化和破坏性不是独立的物理过程。破裂过程保持单位性。另一方面,如果哈密顿的相互作用没有改变系统的能量,则只有反应效应。环境将是基于流离失所的数量状态的分布,并始终增加能量。在这两种情况下,Landauer的原则都得到满足。
We consider quantum decoherence and Landauer's principle in qubit-cavity quantum field theory (QFT) interaction, treating the qubit as the system and cavity QFT as the environment. In particular, we investigate the changes that occur in the system with a pure initial state and environment during the decoherence process, with or without energy dissipation, and compare the results with the case in which the initial state of the system is a mixed state and thus decoherence is absent. When we choose an interaction Hamiltonian such that the energy and coherence of the system change simultaneously, the population change of the system and the energy change are the same when the initial state is mixed. However, the decoherence terms increase the von Neumann entropy of the system. In this case the energy change and decoherence of the system are not independent physical processes. The decoherence process maintains unitarity. On the other hand, if the interaction Hamiltonian does not change the energy of the system, there is only the decoherence effect. The environment will be a distribution in the basis of the displaced number state and always increases the energy. Landauer's principle is satisfied in both cases.