论文标题
部分可观测时空混沌系统的无模型预测
Pose-based Tremor Classification for Parkinson's Disease Diagnosis from Video
论文作者
论文摘要
帕金森氏病(PD)是一种进行性神经退行性疾病,会导致各种运动功能障碍症状,包括震颤,胸肌,僵硬和姿势不稳定。 PD的诊断主要取决于临床经验,而不是确定的医学测试,并且诊断准确性仅为73-84%,因为它受到不同医学专家的主观意见或经验的挑战。因此,有效且可解释的自动PD诊断系统对于支持更强大的诊断决策的临床医生很有价值。为此,我们建议对帕金森的震颤进行分类,因为它是PD的最主要症状之一,具有强烈的普遍性。与其他计算机辅助时间和资源消耗的帕金森震颤(PT)分类系统不同,我们提出了SPAPNET,该系统仅需要消费者级的非侵入式视频记录人类动作的非侵入性视频记录作为输入,以便为低成本的PT分类为PD Warning Signs提供无验证的患者。我们首次提议使用带有轻质锥体通道 - 融合融合体系结构的新型注意模块来提取相关的PT信息并有效地过滤噪声。该设计有助于提高分类性能和系统的解释性。实验结果表明,我们的系统在将PT与非PT类别分类中的平衡精度达到90.9%和90.6%的F1评分来胜过最先进的。
Parkinson's disease (PD) is a progressive neurodegenerative disorder that results in a variety of motor dysfunction symptoms, including tremors, bradykinesia, rigidity and postural instability. The diagnosis of PD mainly relies on clinical experience rather than a definite medical test, and the diagnostic accuracy is only about 73-84% since it is challenged by the subjective opinions or experiences of different medical experts. Therefore, an efficient and interpretable automatic PD diagnosis system is valuable for supporting clinicians with more robust diagnostic decision-making. To this end, we propose to classify Parkinson's tremor since it is one of the most predominant symptoms of PD with strong generalizability. Different from other computer-aided time and resource-consuming Parkinson's Tremor (PT) classification systems that rely on wearable sensors, we propose SPAPNet, which only requires consumer-grade non-intrusive video recording of camera-facing human movements as input to provide undiagnosed patients with low-cost PT classification results as a PD warning sign. For the first time, we propose to use a novel attention module with a lightweight pyramidal channel-squeezing-fusion architecture to extract relevant PT information and filter the noise efficiently. This design aids in improving both classification performance and system interpretability. Experimental results show that our system outperforms state-of-the-arts by achieving a balanced accuracy of 90.9% and an F1-score of 90.6% in classifying PT with the non-PT class.