论文标题
在2017年活动Horizon Telescope活动中观察到的射手座A*的毫米光曲线
Millimeter light curves of Sagittarius A* observed during the 2017 Event Horizon Telescope campaign
论文作者
论文摘要
事件地平线望远镜(EHT)于2017年4月5日至11日在1.3毫米波长带中观察到紧凑的无线电源Sagittarius A*(SGR A*)。同时,收集了来自Atacama大毫米/亚毫米阵列和亚毫升阵列的干涉阵列数据,从而提供了SGR A*光曲线与EHT观测值同时。这些数据集补充了EHT非常长的基线干涉法,其特征是以前在毫米波长下对SGR A*无法实现的节奏和信噪比,并且它们允许对时间标度的源量变化进行简短的调查。虽然大多数光曲线对应于SGR A*的低变异状态,但4月11日的观测值遵循X射线耀斑,并显示出强烈增强的变异性。所有的光曲线都与红噪声过程一致,在1分钟至几个小时之间,在时间尺度上测得的功率谱密度(PSD)斜率在-2和-3之间。我们的结果表明,时间尺度短于0.3小时的PSD斜率陡峭。光谱能分布在220 GHz处是平坦的,在213和229 GHz频带之间没有时间段,这表明事件范围尺度源的光学深度较低。我们表征了sgr a*的变异性,突出了X射线耀斑之后观察到的不同行为,并使用高斯过程建模来提取去相关时间表和PSD斜率。我们还通过分析来自独立数据减少管道的数据来研究系统的校准不确定性。
The Event Horizon Telescope (EHT) observed the compact radio source, Sagittarius A* (Sgr A*), in the Galactic Center on 2017 April 5-11 in the 1.3 millimeter wavelength band. At the same time, interferometric array data from the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array were collected, providing Sgr A* light curves simultaneous with the EHT observations. These data sets, complementing the EHT very-long-baseline interferometry, are characterized by a cadence and signal-to-noise ratio previously unattainable for Sgr A* at millimeter wavelengths, and they allow for the investigation of source variability on timescales as short as a minute. While most of the light curves correspond to a low variability state of Sgr A*, the April 11 observations follow an X-ray flare, and exhibit strongly enhanced variability. All of the light curves are consistent with a red noise process, with a power spectral density (PSD) slope measured to be between -2 and -3 on timescales between 1 min and several hours. Our results indicate a steepening of the PSD slope for timescales shorter than 0.3 h. The spectral energy distribution is flat at 220 GHz and there are no time-lags between the 213 and 229 GHz frequency bands, suggesting low optical depth for the event horizon scale source. We characterize Sgr A*'s variability, highlighting the different behavior observed just after the X-ray flare, and use Gaussian process modeling to extract a decorrelation timescale and a PSD slope. We also investigate the systematic calibration uncertainties by analyzing data from independent data reduction pipelines.