论文标题

圆锥形捆绑包三倍的曲线类和合理性应用程序

Curve classes on conic bundle threefolds and applications to rationality

论文作者

Frei, Sarah, Ji, Lena, Sankar, Soumya, Viray, Bianca, Vogt, Isabel

论文摘要

我们对几何有理表面上的三倍$π\结肠x \ to t $进行研究的研究,其相关的判别涵盖$ \tildeδ\toΔ\ subset w $是平滑的,几何是不可修复的。首先,我们确定组$ \ mathrm {ch}^2 x _ {\ overline {k}} $的曲线的理性等价类别的结构。确切地说,我们从$ \ mathrm {ch}^2x _ {\ overline {k}} $构造了一个galois-equivariant group同构,到与与判别封面相关的组方案$ \tildeδ\ to $ x $。目标组方案是对$ \tildeδ\toδ$的Prym品种的概括,因此我们的结果可以看作是Beauville结果的概括,即在$ x _ {\ overline {k}}上,代数琐碎的曲线类是由prym varive的参数化。 我们将结构性结果应用于曲线类别,以研究Hassett-tschinkel和Benoist-Wittenberg引入的理性中的精致中间雅各布·托索尔(IJT)阻塞。第一种感兴趣的情况是$ W = \ Mathbb p^2 $,$δ$是平滑的平面四重奏。在这种情况下,我们表明,当地场具有较小的算术复杂性时,IJT障碍物是理性的(恰恰是,当地面田地的Brauer群体中的$ 2 $ torsion是微不足道的)。我们还表明,通过在任何$ k \ subset \ mathbb r $上构建这种形式的假设是必要的,这是一个圆锥形捆绑包三倍,$δ$ a $δ$是平滑的四分之一的Quartic,而IJT阻塞消失了,但是$ x $是不合理的,超过$ k $。

We undertake a study of conic bundle threefolds $π\colon X\to W$ over geometrically rational surfaces whose associated discriminant covers $\tildeΔ\toΔ\subset W$ are smooth and geometrically irreducible. First, we determine the structure of the group $\mathrm{CH}^2 X_{\overline{k}}$ of rational equivalence classes of curves. Precisely, we construct a Galois-equivariant group homomorphism from $\mathrm{CH}^2X_{\overline{k}}$ to a group scheme associated to the discriminant cover $\tildeΔ\to Δ$ of $X$. The target group scheme is a generalization of the Prym variety of $\tildeΔ\toΔ$ and so our result can be viewed as a generalization of Beauville's result that the algebraically trivial curve classes on $X_{\overline{k}}$ are parametrized by the Prym variety. We apply our structural result on curve classes to study the refined intermediate Jacobian torsor (IJT) obstruction to rationality introduced by Hassett--Tschinkel and Benoist--Wittenberg. The first case of interest is $W = \mathbb P^2$ and $Δ$ is a smooth plane quartic. In this case, we show that the IJT obstruction characterizes rationality when the ground field has less arithmetic complexity (precisely, when the $2$-torsion in the Brauer group of the ground field is trivial). We also show that a hypothesis of this form is necessary by constructing, over any $k \subset\mathbb R$, a conic bundle threefold with $Δ$ a smooth quartic where the IJT obstruction vanishes, yet $X$ is irrational over $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源