论文标题
带有微型时钟网络的重力红移的基于实验室的测试
A lab-based test of the gravitational redshift with a miniature clock network
论文作者
论文摘要
爱因斯坦的一般相对论理论预测,在更高的引力电位上的时钟将比其他相同的时钟更快地滴答速度,这种时钟在较低的电位上,这种效果被称为引力红移。在这里,我们在5个原子合奏中使用差速器阵列内的差速器时钟对重力红移进行了基于实验室的盲试验,该测试的高度差为1 cm。我们测量$ [-12.4 \ pM0.7 _ {\ rm {(stat)}}} \ pm2.5 _ {\ rm {\ rm {(sys)}] \ times10^{ - 19}/$ cm,与预期的redshift渐变$ -10.9 \ tires cmms一致,我们的$ -19 \ time cmms一致。我们的结果也可以看作是相对论重力电势差测量,对MM尺度的敏感性变化地球表面的高度变化。这些结果突出了与局部振荡者无关的差分时钟比较的潜力,用于光学原子时钟的新兴应用,包括测量,搜索新物理学,重力波检测以及量子力学和重力之间相互作用的探索。
Einstein's theory of general relativity predicts that a clock at a higher gravitational potential will tick faster than an otherwise identical clock at a lower potential, an effect known as the gravitational redshift. Here we perform a laboratory-based, blinded test of the gravitational redshift using differential clock comparisons within an evenly spaced array of 5 atomic ensembles spanning a height difference of 1 cm. We measure a fractional frequency gradient of $[-12.4\pm0.7_{\rm{(stat)}}\pm2.5_{\rm{(sys)}}]\times10^{-19}/$cm, consistent with the expected redshift gradient of $-10.9\times10^{-19}/$cm. Our results can also be viewed as relativistic gravitational potential difference measurements with sensitivity to mm scale changes in height on the surface of the Earth. These results highlight the potential of local-oscillator-independent differential clock comparisons for emerging applications of optical atomic clocks including geodesy, searches for new physics, gravitational wave detection, and explorations of the interplay between quantum mechanics and gravity.