论文标题
解决方案的解决方案的界限,neumann和Robin问题,用于Orlicz空间中的椭圆方程
Boundedness of solutions to Dirichlet, Neumann and Robin problems for elliptic equations in Orlicz spaces
论文作者
论文摘要
考虑到二阶椭圆形方程的边界值问题,其非线性受非必要功率类型的凸功能的控制。其解决方案的全球界限是在Dirichlet,Neumann或Robin类型的边界条件下建立的。在结果中的决定性作用是通过Orlicz-Sobolev嵌入和边界痕迹嵌入的最佳形式启用的,从而允许系数的关键生长。
Boundary value problems for second-order elliptic equations in divergence form, whose nonlinearity is governed by a convex function of non-necessarily power type, are considered. The global boundedness of their solutions is established under boundary conditions of Dirichlet, or Neumann, or Robin type. A decisive role in the results is played by optimal forms of Orlicz-Sobolev embeddings and boundary trace embeddings, which allow for critical growths of the coefficients.