论文标题
学习视差变压器网络用于立体声图像jpeg伪像删除
Learning Parallax Transformer Network for Stereo Image JPEG Artifacts Removal
论文作者
论文摘要
在立体声设置下,可以通过利用第二视图提供的其他信息来进一步改善图像jpeg伪像删除的性能。但是,将此信息纳入立体声图像JPEG伪像去除是一个巨大的挑战,因为现有的压缩工件使像素级视图对齐变得困难。在本文中,我们提出了一种新颖的视差变压器网络(PTNET),以整合来自立体图像对的信息,以进行立体图像jpeg jpeg trifacts删除。具体而言,提出了精心设计的对称双向视差变压器模块,以匹配不同视图之间的纹理,而不是像素级视图对齐。由于遮挡和边界的问题,提出了一个基于置信的跨视图融合模块,以实现两种视图的更好的特征融合,其中跨视图特征通过置信图加权。尤其是,我们为跨视图互动采用粗线设计,从而提高性能。全面的实验结果表明,与其他测试的最先进的方法相比,我们的PTNET可以有效地消除压缩伪像并取得更高的性能。
Under stereo settings, the performance of image JPEG artifacts removal can be further improved by exploiting the additional information provided by a second view. However, incorporating this information for stereo image JPEG artifacts removal is a huge challenge, since the existing compression artifacts make pixel-level view alignment difficult. In this paper, we propose a novel parallax transformer network (PTNet) to integrate the information from stereo image pairs for stereo image JPEG artifacts removal. Specifically, a well-designed symmetric bi-directional parallax transformer module is proposed to match features with similar textures between different views instead of pixel-level view alignment. Due to the issues of occlusions and boundaries, a confidence-based cross-view fusion module is proposed to achieve better feature fusion for both views, where the cross-view features are weighted with confidence maps. Especially, we adopt a coarse-to-fine design for the cross-view interaction, leading to better performance. Comprehensive experimental results demonstrate that our PTNet can effectively remove compression artifacts and achieves superior performance than other testing state-of-the-art methods.