论文标题

在未知环境中,多AGV的基于时间内存的RRT探索

Multi-AGV's Temporal Memory-based RRT Exploration in Unknown Environment

论文作者

Lau, Billy Pik Lik, Ong, Brandon Jin Yang, Loh, Leonard Kin Yung, Liu, Ran, Yuen, Chau, Soh, Gim Song, Tan, U-Xuan

论文摘要

随着在充满挑战的环境中越来越需要多机器人来探索未知区域,需要有效的协作探索策略来实现此类壮举。可以部署基于边境的快速探索随机树(RRT)探索来探索未知环境。但是,其贪婪的行为导致多个机器人探索收入最高的地区,从而导致勘探过程中大量重叠。为了解决这个问题,我们提出了基于时间内存的RRT(TM-RRT)探索策略,用于多机器人在未知环境中执行强大的探索。它根据每个机器人的相对位置计算分配的每个边界的自适应持续时间,并计算边界的收入。此外,每个机器人都配备了由分配的边界和舰队共享的内存,以防止重复对同一边界的分配。通过模拟和实际部署,我们通过在25.0m x 540m(1350.0m2)区域完成勘探,展示了TM-RRT勘探策略的鲁棒性,而常规的RRT勘探策略则不足。

With the increasing need for multi-robot for exploring the unknown region in a challenging environment, efficient collaborative exploration strategies are needed for achieving such feat. A frontier-based Rapidly-Exploring Random Tree (RRT) exploration can be deployed to explore an unknown environment. However, its' greedy behavior causes multiple robots to explore the region with the highest revenue, which leads to massive overlapping in exploration process. To address this issue, we present a temporal memory-based RRT (TM-RRT) exploration strategy for multi-robot to perform robust exploration in an unknown environment. It computes adaptive duration for each frontier assigned and calculates the frontier's revenue based on the relative position of each robot. In addition, each robot is equipped with a memory consisting of frontier assigned and share among fleets to prevent repeating assignment of same frontier. Through both simulation and actual deployment, we have shown the robustness of TM-RRT exploration strategy by completing the exploration in a 25.0m x 54.0m (1350.0m2) area, while the conventional RRT exploration strategy falls short.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源