论文标题
稳定地确定来自库奇数据的schrödinger方程中各向异性包含
Stable determination of an anisotropic inclusion in the Schrödinger equation from local Cauchy data
论文作者
论文摘要
我们考虑通过局部cauchy数据确定schrödinger型方程中包含的包含的逆问题。身体和包容都是由不均匀和各向异性材料制成的。在对未知纳入的先验假设下,我们就局部库奇数据建立了对数稳定性估计。鉴于可能的应用,我们还根据临时错误配置功能提供了稳定性估计。
We consider the inverse problem of determining an inclusion contained in a body for a Schrödinger type equation by means of local Cauchy data. Both the body and the inclusion are made by inhomogeneous and anisotropic materials. Under mild a priori assumptions on the unknown inclusion, we establish a logarithmic stability estimate in terms of the local Cauchy data. In view of possible applications, we also provide a stability estimate in terms of an ad-hoc misfit functional.