论文标题

COEM:跨模式嵌入以鉴定

COEM: Cross-Modal Embedding for MetaCell Identification

论文作者

Mao, Haiyi, Jia, Minxue, Dou, Jason Xiaotian, Zhang, Haotian, Benos, Panayiotis V.

论文摘要

仪表是单细胞谱的不相交和均匀的组,代表离散和高度颗粒的细胞态。现有的元算法倾向于仅使用一种模态来推断元素,即使单细胞多摩变数据集谱图在同一细胞内多个分子模态。 Here, we present \textbf{C}ross-M\textbf{O}dal \textbf{E}mbedding for \textbf{M}etaCell Identification (COEM), which utilizes an embedded space leveraging the information of both scATAC-seq and scRNA-seq to perform aggregation, balancing the trade-off between fine resolution and sufficient sequencing coverage. COEM通过有效识别具有连续和离散细胞类型的数据集的准确且分离良好的元素来优于最先进的方法海科。此外,COEM显着改善了峰到基因的关联分析,并促进了复杂的基因调节推理任务。

Metacells are disjoint and homogeneous groups of single-cell profiles, representing discrete and highly granular cell states. Existing metacell algorithms tend to use only one modality to infer metacells, even though single-cell multi-omics datasets profile multiple molecular modalities within the same cell. Here, we present \textbf{C}ross-M\textbf{O}dal \textbf{E}mbedding for \textbf{M}etaCell Identification (COEM), which utilizes an embedded space leveraging the information of both scATAC-seq and scRNA-seq to perform aggregation, balancing the trade-off between fine resolution and sufficient sequencing coverage. COEM outperforms the state-of-the-art method SEACells by efficiently identifying accurate and well-separated metacells across datasets with continuous and discrete cell types. Furthermore, COEM significantly improves peak-to-gene association analyses, and facilitates complex gene regulatory inference tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源