论文标题
马拉斯:合作自适应抽样的多代理增强学习
MARLAS: Multi Agent Reinforcement Learning for cooperated Adaptive Sampling
论文作者
论文摘要
多机器人自适应抽样问题旨在为机器人团队找到轨迹,以有效地对机器人的给定耐力预算中感兴趣的现象进行采样。在本文中,我们使用多代理增强学习来提出一种可靠,可扩展的方法,用于用于准静态环境过程的合作自适应采样(MARLAS)。鉴于该领域的先验是进行了采样的,该提议的方法学习了一个机器人团队的分散政策,以在固定预算范围内采样高耗时区域。多机器人自适应采样问题要求机器人彼此协调,以避免重叠的采样轨迹。因此,我们编码机器人之间的邻居位置和间歇性通信在学习过程中的估计值。我们评估了Marlas对多个性能指标的评估,并发现它的表现优于其他基线多机器人采样技术。此外,我们通过机器人团队的大小和要采样的区域的大小来证明可伸缩性。我们进一步证明了通信失败和机器人失败的鲁棒性。实验评估既是对真实数据的模拟,又在演示环境设置的实际机器人实验中进行的。
The multi-robot adaptive sampling problem aims at finding trajectories for a team of robots to efficiently sample the phenomenon of interest within a given endurance budget of the robots. In this paper, we propose a robust and scalable approach using Multi-Agent Reinforcement Learning for cooperated Adaptive Sampling (MARLAS) of quasi-static environmental processes. Given a prior on the field being sampled, the proposed method learns decentralized policies for a team of robots to sample high-utility regions within a fixed budget. The multi-robot adaptive sampling problem requires the robots to coordinate with each other to avoid overlapping sampling trajectories. Therefore, we encode the estimates of neighbor positions and intermittent communication between robots into the learning process. We evaluated MARLAS over multiple performance metrics and found it to outperform other baseline multi-robot sampling techniques. Additionally, we demonstrate scalability with both the size of the robot team and the size of the region being sampled. We further demonstrate robustness to communication failures and robot failures. The experimental evaluations are conducted both in simulations on real data and in real robot experiments on demo environmental setup.