论文标题
在混乱的场景中进行体现探索的场景图
Scene Graph for Embodied Exploration in Cluttered Scenario
论文作者
论文摘要
机器人社区早已期望在混乱环境中处理物体的能力。但是,大多数作品只是专注于操纵,而不是在混乱的对象中呈现隐藏的语义信息。在这项工作中,我们介绍了在混乱的场景中进行体现探索的场景图,以解决此问题。为了在混乱的情况下验证我们的方法,我们采用操纵问题答案(MQA)任务作为我们的测试基准,该测试基准要求具有体现的机器人具有主动探索能力和视觉和语言的语义理解能力和语言的语义理解能力。 Meanwhile, a VQA model based on dynamic scene graph is adopted to comprehend a series of RGB frames from wrist camera of manipulator along with every step of manipulation is conducted to answer questions in our framework.The experiments on of MQA dataset with different interaction requirements demonstrate that our proposed framework is effective for MQA task a representative of tasks in cluttered scenario.
The ability to handle objects in cluttered environment has been long anticipated by robotic community. However, most of works merely focus on manipulation instead of rendering hidden semantic information in cluttered objects. In this work, we introduce the scene graph for embodied exploration in cluttered scenarios to solve this problem. To validate our method in cluttered scenario, we adopt the Manipulation Question Answering (MQA) tasks as our test benchmark, which requires an embodied robot to have the active exploration ability and semantic understanding ability of vision and language.As a general solution framework to the task, we propose an imitation learning method to generate manipulations for exploration. Meanwhile, a VQA model based on dynamic scene graph is adopted to comprehend a series of RGB frames from wrist camera of manipulator along with every step of manipulation is conducted to answer questions in our framework.The experiments on of MQA dataset with different interaction requirements demonstrate that our proposed framework is effective for MQA task a representative of tasks in cluttered scenario.