论文标题

调制波列的相位收敛和顶峰增强

Phase convergence and crest enhancement of modulated wave trains

论文作者

Houtani, Hidetaka, Sawada, Hiroshi, Waseda, Takuji

论文摘要

非线性Schr $Ö$ dinger方程(NLSE)的Akhmedieev呼吸器(AB)解决方案表明,由于非线性长期进化,调制波列的最大波峰高度达到了三倍的初始幅度。一些完全非线性的数值研究表明,扩增可以超过3个,但尚未阐明其物理机制。这项研究表明,光谱扩展,结合波的产生和相位收敛对于超出AB解决方案以外的波峰增强至关重要。由于非线性准谐振相互作用,调制波序列的自由波频谱扩大了。这增强了高波数的界限产量。在峰调制下,所有波分量的阶段几乎重合并增强放大。我们发现,由于非线性波的演化,也可能发生在线性关注波中观察到的相位收敛。这些发现是通过使用高阶光谱法(HOSM)到第五阶的数值研究调制波列来获得的,该方法允许研究超出NLSE框架以外的非线性和光谱带宽。此外,我们通过坦克实验确认了波峰的增强,在该实验中,从非破裂到断裂的过渡区域中产生了波峰。由于强大的非线性,在0.10的初始波浪陡度下,在储罐中观察到的最大峰值高度开始超过HOSM预测。

The Akhmediev breather (AB) solution of the nonlinear Schr$ö$dinger equation (NLSE) shows that the maximum crest height of modulated wave trains reaches triple the initial amplitude as a consequence of nonlinear long-term evolution. Several fully nonlinear numerical studies have indicated that the amplification can exceed 3, but its physical mechanism has not been clarified. This study shows that spectral broadening, bound-wave production, and phase convergence are essential to crest enhancement beyond the AB solution. The free-wave spectrum of modulated wave trains broadens owing to nonlinear quasi-resonant interaction. This enhances bound-wave production at high wavenumbers. The phases of all the wave components nearly coincide at peak modulation and enhance amplification. We find that the phase convergence observed in linear-focusing waves can also occur due to nonlinear wave evolution. These findings are obtained by numerically investigating the modulated wave trains using the higher-order spectral method (HOSM) up to the fifth order, which allows investigations of nonlinearity and spectral bandwidth beyond the NLSE framework. Moreover, we confirm the crest enhancement through a tank experiment wherein waves are generated in the transition region from non-breaking to breaking. Owing to strong nonlinearity, the maximum crest height observed in the tank begins to exceed the HOSM prediction at an initial wave steepness of 0.10.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源