论文标题
besov空间中Camassa-Holm方程的溶液图的连续性均不均匀
Nowhere-uniform continuity of the solution map of the Camassa-Holm equation in Besov spaces
论文作者
论文摘要
在本文中,我们在[32](J.Dill。269(2020))中加强了我们以前的工作,并证明了Camassa-Holm方程的数据到解决图在$ B^s_ {p,r}(p,r}(\ r}(\ r)中,带有$ b^s_ {p,r}(\ r)$,带有$ s> \ s> \ s> \ s> \ s> \ {1+1+1+1/3/3/3/3/3/3/3/3/ [1,\ infty] \ times [1,\ infty)$。该方法也适用于包含Camassa-Holm和Degasperis-Procesi方程的方程的B家族。
In the paper, we gave a strengthening of our previous work in [32] (J. Differ. Equ. 269 (2020)) and proved that the data-to-solution map for the Camassa-Holm equation is nowhere uniformly continuous in $B^s_{p,r}(\R)$ with $s>\max\{1+1/{p},3/2\}$ and $(p,r)\in [1,\infty]\times[1,\infty)$. The method applies also to the b-family of equations which contain the Camassa-Holm and Degasperis-Procesi equations.