论文标题

Plaquette随机群集模型和Potts晶格理论中的拓扑阶段

Topological Phases in the Plaquette Random-Cluster Model and Potts Lattice Gauge Theory

论文作者

Duncan, Paul, Schweinhart, Benjamin

论文摘要

有限立方体上的$ i $二维Plaquette随机群集模型是$ i $ plaquettes的随机复合体,每种配置的概率与$$ p^{\ plaquettes}}}}}(1-p)(1-p)^{ b} _ {i-1}},$$其中$ q \ geq 1 $是一个真实参数,$ \ mathbf {b} _ {i-1} $表示$(i-1)$ - 同源群的等级,该组在指定的系数字段中具有系数。当$ q $是PRIME,并且系数字段为$ \ Mathbb {f} _Q $时,此型号与$(i-1)$ -Dimensional $ q $ -State Potts Potts lattice Gauge理论相结合。我们证明,在$ \ mathbb {z}^d $中$(i-1)$ - 循环的概率在Plaquette Random-Cluster模型中是无原样的,等于相应的通用Wilson Loop可变的期望。这为Aizenman,Chayes,Chayes,Frölich和Russo的主张提供了第一个严格的理由,即Wilson Loop变量与循环在plaquettes相互作用的系统中受到表面界定的事件之间存在确切的关系。我们还证明,$ i $ dimensional Plaquette随机群集模型在$ 2i $ - 维圆环上表现出在自偶点$ p _ {\ mathrm {sd}}} \ Mathrel {\ Mathrel {\ vcenter {\ vcenter {\ vcenter {:}} = =:}} = =: \ frac {\ sqrt {q}} {1+ \ sqrt {q}} $在同源渗透的意义上。这意味着从局部到非本地行为的广义Swendsen的质量变化。

The $i$-dimensional plaquette random-cluster model on a finite cubical complex is the random complex of $i$-plaquettes with each configuration having probability proportional to $$p^{\text{# of plaquettes}}(1-p)^{\text{# of complementary plaquettes}}q^{\mathbf{ b}_{i-1}},$$ where $q\geq 1$ is a real parameter and $\mathbf{b}_{i-1}$ denotes the rank of the $(i-1)$-homology group with coefficients in a specified coefficient field. When $q$ is prime and the coefficient field is $\mathbb{F}_q$, this model is coupled with the $(i-1)$-dimensional $q$-state Potts lattice gauge theory. We prove that the probability that an $(i-1)$-cycle in $\mathbb{Z}^d$ is null-homologous in the plaquette random-cluster model equals the expectation of the corresponding generalized Wilson loop variable. This provides the first rigorous justification for a claim of Aizenman, Chayes, Chayes, Frölich, and Russo that there is an exact relationship between Wilson loop variables and the event that a loop is bounded by a surface in an interacting system of plaquettes. We also prove that the $i$-dimensional plaquette random-cluster model on the $2i$-dimensional torus exhibits a sharp phase transition at the self-dual point $p_{\mathrm{sd}} \mathrel{\vcenter{:}}= \frac{\sqrt{q}}{1+\sqrt{q}}$ in the sense of homological percolation. This implies a qualitative change in the generalized Swendsen--Wang dynamics from local to non-local behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源