论文标题

用凸边缘重量功能提取最密集的亚hypergraph

Extracting Densest Sub-hypergraph with Convex Edge-weight Functions

论文作者

Zhou, Yi, Hu, Shan, Sheng, Zimo

论文摘要

旨在查找诱导子图的最密集的子图问题(DSG),以使该子图的平均边缘重量最大化,这是一个充分研究的问题。但是,当输入图是超图时,现有的DSG概念未能捕获一个事实,即部分属于诱导的亚hypergraph的高度也是亚hypergraph的一部分。要解决问题,我们建议一个函数$ f_e:\ mathbb {z} _ {\ ge0} \ rightarrow \ rightArrow \ mathbb {r} _ {\ ge 0} $表示输入$ \ \ mathcal $ \ nathcal $ \ natercal $ \ mathcal {e $ and的hypereedge $ e $的部分边缘 - 广义密集的子hypergraph问题(gdsh)作为$ \ max_ {s \ subseteq v} \ frac {\ sum_ {e \ in \ mathcal {e}}} {f_e(| e \ cap s |)}}} {| s |} $。我们证明,当所有边缘权重功能都不应对凸面时,可以通过基于线性程序的算法,基于网络的基于网络的基于网络的算法和贪婪$ \ frac {1} {1} {r} $ - 近似算法 - $ r $等级的gdsh在多项式时间内求解GDSH。最后,我们研究了某些边缘重量函数是非convex的GDSH的计算障碍性。

The densest subgraph problem (DSG) aiming at finding an induced subgraph such that the average edge-weights of the subgraph is maximized, is a well-studied problem. However, when the input graph is a hypergraph, the existing notion of DSG fails to capture the fact that a hyperedge partially belonging to an induced sub-hypergraph is also a part of the sub-hypergraph. To resolve the issue, we suggest a function $f_e:\mathbb{Z}_{\ge0}\rightarrow \mathbb{R}_{\ge 0}$ to represent the partial edge-weight of a hyperedge $e$ in the input hypergraph $\mathcal{H}=(V,\mathcal{E},f)$ and formulate a generalized densest sub-hypergraph problem (GDSH) as $\max_{S\subseteq V}\frac{\sum_{e\in \mathcal{E}}{f_e(|e\cap S|)}}{|S|}$. We demonstrate that, when all the edge-weight functions are non-decreasing convex, GDSH can be solved in polynomial-time by the linear program-based algorithm, the network flow-based algorithm and the greedy $\frac{1}{r}$-approximation algorithm where $r$ is the rank of the input hypergraph. Finally, we investigate the computational tractability of GDSH where some edge-weight functions are non-convex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源