论文标题
贝叶斯优化宏观放置
Bayesian Optimization for Macro Placement
论文作者
论文摘要
宏位置是将内存块放在芯片画布上的问题。它可以在序列对上表达为组合优化问题,该表示形式描述了宏的相对位置。解决此问题特别具有挑战性,因为目标功能评估昂贵。在本文中,我们使用贝叶斯优化(BO)在序列对上开发了一种新颖的宏观放置方法。 BO是一种机器学习技术,它使用概率替代模型和采集功能,可以平衡探索和开发以有效地优化黑盒目标函数。 BO比强化学习更有效,因此可以与更现实的目标一起使用。此外,从数据中学习并将算法适应目标函数的能力使BO成为其他黑盒优化方法(例如模拟退火)的吸引人替代方案,该方法依赖于问题依赖性的启发式方法和参数调用。我们在固定外线宏观位置问题上基准了我们的算法,并具有半二级线长度目标,并表现出竞争性的性能。
Macro placement is the problem of placing memory blocks on a chip canvas. It can be formulated as a combinatorial optimization problem over sequence pairs, a representation which describes the relative positions of macros. Solving this problem is particularly challenging since the objective function is expensive to evaluate. In this paper, we develop a novel approach to macro placement using Bayesian optimization (BO) over sequence pairs. BO is a machine learning technique that uses a probabilistic surrogate model and an acquisition function that balances exploration and exploitation to efficiently optimize a black-box objective function. BO is more sample-efficient than reinforcement learning and therefore can be used with more realistic objectives. Additionally, the ability to learn from data and adapt the algorithm to the objective function makes BO an appealing alternative to other black-box optimization methods such as simulated annealing, which relies on problem-dependent heuristics and parameter-tuning. We benchmark our algorithm on the fixed-outline macro placement problem with the half-perimeter wire length objective and demonstrate competitive performance.