论文标题

Schrödinger平均序列和相关概括的急剧收敛性

Sharp convergence for sequences of Schrödinger means and related generalizations

论文作者

Li, Wenjuan, Wang, Huiju, Yan, Dunyan

论文摘要

为了减少序列$ \ {t_ {n} _ {n = 1}^{\ infty} $收敛到零,我们几乎获得了schrödinger序列的几乎所有地方的收敛结果,表示$ e^{it_ {it_ {n} e}δ}δ} f $ n \ geq 2 $。收敛结果呈尖锐到端点,并且该方法还可以应用于分数schrödinger均值和非ellipticticschrödinger均值的收敛结果。

For decreasing sequences $\{t_{n}\}_{n=1}^{\infty}$ converging to zero, we obtain the almost everywhere convergence results for sequences of Schrödinger means $e^{it_{n}Δ}f$, where $f \in H^{s}(\mathbb{R}^{N}), N\geq 2$. The convergence results are sharp up to the endpoints, and the method can also be applied to get the convergence results for the fractional Schrödinger means and nonelliptic Schrödinger means.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源