论文标题

D $^3 $ FLOWLAM:自我监督的动态大满贯,流动运动分解和Dino指导

D$^3$FlowSLAM: Self-Supervised Dynamic SLAM with Flow Motion Decomposition and DINO Guidance

论文作者

Yu, Xingyuan, Ye, Weicai, Guo, Xiyue, Ming, Yuhang, Li, Jinyu, Bao, Hujun, Cui, Zhaopeng, Zhang, Guofeng

论文摘要

在本文中,我们介绍了一种自我监督的深猛击方法,该方法在动态场景中稳健地运行,同时准确地识别动态组件。我们的方法利用双流量表示进行静态流和动态流,从而促进了动态环境中有效的场景分解。我们基于此表示形式提出了一个动态更新模块,并开发了在动态方案中脱颖而出的密集大满贯系统。此外,我们还设计了一种使用Dino作为先验的自制训练计划,从而实现了无标签的培训。与其他自制方法相比,我们的方法达到了卓越的精度。在某些情况下,它还匹配甚至超过现有监督方法的性能。所有代码和数据将在接受后公开可用。

In this paper, we introduce a self-supervised deep SLAM method that robustly operates in dynamic scenes while accurately identifying dynamic components. Our method leverages a dual-flow representation for static flow and dynamic flow, facilitating effective scene decomposition in dynamic environments. We propose a dynamic update module based on this representation and develop a dense SLAM system that excels in dynamic scenarios. In addition, we design a self-supervised training scheme using DINO as a prior, enabling label-free training. Our method achieves superior accuracy compared to other self-supervised methods. It also matches or even surpasses the performance of existing supervised methods in some cases. All code and data will be made publicly available upon acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源