论文标题

SPD歧管上的生理和行为信号融合,并应用于压力和疼痛检测

Fusion of Physiological and Behavioural Signals on SPD Manifolds with Application to Stress and Pain Detection

论文作者

WU, Yujin, Daoudi, Mohamed, Amad, Ali, Sparrow, Laurent, D'Hondt, Fabien

论文摘要

现有的多模式应力/疼痛识别方法通常独立地从不同的方式中提取特征,因此忽略了交叉模式相关性。本文提出了一个新型的几何框架,用于使用对称阳性(SPD)矩阵作为一种表示的多模式应力/疼痛检测,该代表性结合了协方差和交叉稳定性的生理和行为信号的相关关系。考虑到SPD矩阵的Riemannian流形的非线性,众所周知的机器学习技术不适合对这些矩阵进行分类。因此,采用了切线空间映射方法将派生的SPD矩阵序列映射到可将基于LSTM的网络用于分类的切线空间中的向量序列。提出的框架已在两个公共多模式数据集上进行了评估,这两者都取得了压力和疼痛检测任务的最新结果。

Existing multimodal stress/pain recognition approaches generally extract features from different modalities independently and thus ignore cross-modality correlations. This paper proposes a novel geometric framework for multimodal stress/pain detection utilizing Symmetric Positive Definite (SPD) matrices as a representation that incorporates the correlation relationship of physiological and behavioural signals from covariance and cross-covariance. Considering the non-linearity of the Riemannian manifold of SPD matrices, well-known machine learning techniques are not suited to classify these matrices. Therefore, a tangent space mapping method is adopted to map the derived SPD matrix sequences to the vector sequences in the tangent space where the LSTM-based network can be applied for classification. The proposed framework has been evaluated on two public multimodal datasets, achieving both the state-of-the-art results for stress and pain detection tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源