论文标题
钻石综合量子光子学:评论
Diamond Integrated Quantum Photonics: A Review
论文作者
论文摘要
钻石中的综合量子光子设备对于许多量子应用具有巨大的潜力,包括长距离量子通信,量子信息处理和量子传感。这些设备受益于钻石的特性,光学和机械性能的结合。它的宽电子带隙使钻石成为各种光学主动旋转量子位的理想宿主,这些旋转量线是量子技术的关键构件。在具有里程碑意义的实验中,钻石旋转Qubits启用了远程纠缠,内存增强的量子通信和具有耐故障量子误差校正的多量子旋转寄存器的演示,从而实现了多端量子网络。这些进步使钻石处于用于量子信息处理的固态材料平台的最前沿。钻石纳米制造技术的最新发展为进一步扩展这些具有里程碑意义的实验提供了一种有希望的途径。在本文中,我们着重于创建集成的钻石量子光子设备的最新进展,特别着重于自旋光子接口,空腔光学机械设备和旋转频率转导。最后,我们讨论了在可扩展量子技术中使用钻石的前景和剩余挑战。
Integrated quantum photonics devices in diamond have tremendous potential for many quantum applications, including long-distance quantum communication, quantum information processing, and quantum sensing. These devices benefit from diamond's combination of exceptional thermal, optical, and mechanical properties. Its wide electronic bandgap makes diamond an ideal host for a variety of optical active spin qubits that are key building blocks for quantum technologies. In landmark experiments, diamond spin qubits have enabled demonstrations of remote entanglement, memory-enhanced quantum communication, and multi-qubit spin registers with fault-tolerant quantum error correction, leading to the realization of multinode quantum networks. These advancements put diamond at the forefront of solid-state material platforms for quantum information processing. Recent developments in diamond nanofabrication techniques provide a promising route to further scaling of these landmark experiments towards real-life quantum technologies. In this paper, we focus on the recent progress in creating integrated diamond quantum photonic devices, with particular emphasis on spin-photon interfaces, cavity optomechanical devices, and spin-phonon transduction. Finally, we discuss prospects and remaining challenges for the use of diamond in scalable quantum technologies.