论文标题
艺术:向中学生介绍通过虚拟机器人技术加强学习
ARtonomous: Introducing Middle School Students to Reinforcement Learning Through Virtual Robotics
论文作者
论文摘要
典型的教育机器人技术依赖于机器人导航的命令编程。但是,随着日常生活中AI的越来越多的存在,这些方法错过了引入机器学习(ML)技术的机会,以真实而引人入胜的学习环境为基础。此外,对昂贵的专业设备和足够的物理空间的需求是限制所有学习者获得机器人经验的障碍。我们提出了Artansos,是一种相对低成本的虚拟替代品,可替代物理,仅编程的机器人技术套件。借助Artonomions,学生将加固学习(RL)与代码一起训练和定制虚拟自动驾驶机器人车。通过一项评估艺术的研究,我们发现中学生对RL有了了解,报告了高水平的参与度,并表现出对ML的更多了解的好奇心。这项研究证明了像Artonomic这样的方法的可行性1)消除机器人教育的障碍,以及2)促进学生学习和对RL和ML的兴趣。
Typical educational robotics approaches rely on imperative programming for robot navigation. However, with the increasing presence of AI in everyday life, these approaches miss an opportunity to introduce machine learning (ML) techniques grounded in an authentic and engaging learning context. Furthermore, the needs for costly specialized equipment and ample physical space are barriers that limit access to robotics experiences for all learners. We propose ARtonomous, a relatively low-cost, virtual alternative to physical, programming-only robotics kits. With ARtonomous, students employ reinforcement learning (RL) alongside code to train and customize virtual autonomous robotic vehicles. Through a study evaluating ARtonomous, we found that middle-school students developed an understanding of RL, reported high levels of engagement, and demonstrated curiosity for learning more about ML. This research demonstrates the feasibility of an approach like ARtonomous for 1) eliminating barriers to robotics education and 2) promoting student learning and interest in RL and ML.