论文标题
具有隐藏PT对称缺陷的周期性元结构中特殊点的出现
Emergence of Exceptional Points in Periodic Metastructures with Hidden PT-symmetric Defects
论文作者
论文摘要
我们研究了一个周期性的元结构的弹性动力学,该元结构结合了一个缺陷对,该缺陷对由于明智地设计的想象阻抗元件而强制执行平均时间(PT)对称性 - 一个具有能量扩增(增益),另一种具有等效衰减(损失)机制。我们表明,它们的存在会影响周期性遗传元结构的初始带结构,并导致形成许多特殊点(EPS),这些点主要位于模式局部密度较高的带边缘。 PT-对称缺陷的空间位置是对相应光谱中新兴EP的数量以及创建第一个EP所需的关键非热(增益/损失)强度的额外控制 - 特定的缺陷位置最小化了关键的非官能强度。我们使用有限元和基于模式理论的模型来研究这些元结构,并使用时间无关的二阶扰动理论进一步证明了元结构的大小和PT-对称缺陷位置对最小非官能强度的影响,以在频段中创建第一个EP。我们的发现激发了可行的设计,以实现弹性动力学元结构中EP的实验。
We study the elastodynamics of a periodic metastructure incorporating a defect pair that enforces a parity-time (PT) symmetry due to a judiciously engineered imaginary impedance elements - one having energy amplification (gain) and the other having an equivalent attenuation (loss) mechanism. We show that their presence affects the initial band structure of the periodic Hermitian metastructure and leads to the formation of numerous exceptional points (EPs) which are mainly located at the band edges where the local density of modes is higher. The spatial location of the PT-symmetric defect serves as an additional control over the number of emerging EPs in the corresponding spectra as well as the critical non-Hermitian (gain/loss) strength required to create the first EP - a specific defect location minimizes the critical non-Hermitian strength. We use both finite element and coupled-mode-theory-based models to investigate these metastructures, and use a time-independent second-order perturbation theory to further demonstrate the influence of the size of the metastructure and the PT-symmetric defect location on the minimum non-Hermitian strength required to create the first EP in a band. Our findings motivate feasible designs for the experimental realization of EPs in elastodynamic metastructures.