论文标题

封闭者重新识别的动态原型面具

Dynamic Prototype Mask for Occluded Person Re-Identification

论文作者

Tan, Lei, Dai, Pingyang, Ji, Rongrong, Wu, Yongjian

论文摘要

尽管近年来人的重新识别取得了令人印象深刻的改善,但在实际应用程序场景中,由不同的障碍引起的常见闭塞案例仍然是一个尚未确定的问题。现有方法主要通过采用额外网络提供的身体线索来区分可见部分,以解决此问题。然而,助理模型和REID数据集之间的不可避免的域间隙很大程度上增加了获得有效和有效模型的困难。为了摆脱额外的预训练网络并在端到端可训练网络中实现自动对齐,我们根据两个不言而喻的先验知识提出了一种新型的动态原型掩码(DPM)。具体而言,我们首先设计了一个层次掩码生成器,该层面生成器利用层次的语义选择高质量的整体原型和闭塞输入图像的特征表示之间的可见图案空间。在这种情况下,可以自发地在选定的子空间中很好地对齐。然后,为了丰富高质量整体原型的特征表示并提供更完整的特征空间,我们引入了一个头部丰富模块,以鼓励不同的头部在整个图像中汇总不同的模式表示。对被遮挡和整体人士重新识别基准进行的广泛的实验评估证明了DPM优于最先进的方法。该代码在https://github.com/stone96123/dpm上发布。

Although person re-identification has achieved an impressive improvement in recent years, the common occlusion case caused by different obstacles is still an unsettled issue in real application scenarios. Existing methods mainly address this issue by employing body clues provided by an extra network to distinguish the visible part. Nevertheless, the inevitable domain gap between the assistant model and the ReID datasets has highly increased the difficulty to obtain an effective and efficient model. To escape from the extra pre-trained networks and achieve an automatic alignment in an end-to-end trainable network, we propose a novel Dynamic Prototype Mask (DPM) based on two self-evident prior knowledge. Specifically, we first devise a Hierarchical Mask Generator which utilizes the hierarchical semantic to select the visible pattern space between the high-quality holistic prototype and the feature representation of the occluded input image. Under this condition, the occluded representation could be well aligned in a selected subspace spontaneously. Then, to enrich the feature representation of the high-quality holistic prototype and provide a more complete feature space, we introduce a Head Enrich Module to encourage different heads to aggregate different patterns representation in the whole image. Extensive experimental evaluations conducted on occluded and holistic person re-identification benchmarks demonstrate the superior performance of the DPM over the state-of-the-art methods. The code is released at https://github.com/stone96123/DPM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源