论文标题

弱监督点云分段的双重自适应转换

Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation

论文作者

Wu, Zhonghua, Wu, Yicheng, Lin, Guosheng, Cai, Jianfei, Qian, Chen

论文摘要

由于在整个3D场景中只有几个标记点的点云,因此,由于为模型训练收集丰富的密集注释,因此,在整个3D场景中只有几个标记点的点云进行分割。但是,现有方法仍然具有挑战性,无法准确细分3D点云,因为有限的注释数据可能会导致标签传播的指导不足以进行未标记的数据。考虑到基于平滑度的方法已经取得了令人鼓舞的进步,在本文中,我们主张在各种扰动下应用一致性约束,以有效地正规化未标记的3D点。具体而言,我们为弱监督点云进行段落的模型提出了一个新颖的dat(\ textbf {d} ual \ textbf {a} daptive \ textbf {t}变形)模型,其中双重自适应转换是通过对层次和区域稳定的范围固定在局部范围和范围的范围的对抗性策略进行的。我们在大规模S3DIS和SCANNET-V2数据集上使用两个流行的骨干评估了我们提出的DAT模型。广泛的实验表明,我们的模型可以有效地利用未标记的3D点并在两个数据集上实现显着的性能提高,从而为弱监督的点云进行了新的最新性能。

Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (\textbf{D}ual \textbf{A}daptive \textbf{T}ransformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源