论文标题

$ \ infty $ - 类别反射定理和应用

The $\infty$-Categorical Reflection Theorem and Applications

论文作者

Ragimov, Shaul, Schlank, Tomer M.

论文摘要

在本文中,我们证明了Adámek-Rosický反射定理的$ \ infty $分类版。也就是说,在限制下关闭和$κ$滤光的colimits的全面$ \ infty $类别的完整子类别是一个可呈现的$ \ infty $ - 类别。然后,我们使用此定理来对对称单体$ \ infty $ - 类别的子类别进行分类,该类别等效于一个模块上的模块。

In this paper we prove an $\infty$-categorical version of the reflection theorem of Adámek-Rosický. Namely, that a full subcategory of a presentable $\infty$-category which is closed under limits and $κ$-filtered colimits is a presentable $\infty$-category. We then use this theorem in order to classify subcategories of a symmetric monoidal $\infty$-category which are equivalent to a category of modules over an idempotent algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源