论文标题
伊利诺伊快递量子大都会区域网络的设计和实施
Design and Implementation of the Illinois Express Quantum Metropolitan Area Network
论文作者
论文摘要
Illinois Express量子网络(IEQNET)是一个程序,可以使用当前可用的技术实现通过部署的光纤上的大都市尺度量子网络。 IEQNET由多个在芝加哥大都市地区分散的地理位置分散的地点组成。每个站点都有一个或多个量子节点(Q节点),代表量子网络中的通信方。 Q节点生成或测量量子信号,例如纠缠光子,并通过标准,经典信号和常规网络过程传达测量结果。 IEQNET节点中的纠缠光子是在多个波长下生成的,并通过透明的光学开关选择性地分布给所需的用户。在这里,我们描述了IEQNET的网络体系结构,包括互联网启发的分层层次结构,该层次结构利用软件定义的网络(SDN)技术来执行传统的波长路由和Q节点之间的分配。具体而言,SDN将控制平面完全实现在经典域中。我们还讨论了与同步,校准,网络监视和调度有关的问题的IEQNET过程。 IEQNET的一个重要目标是证明控制平面经典信号可以与同一光纤线中的数据平面量子信号(量子 - 古典信号“共存”)共同汇总。通过在接收器处使用可调窄带光学滤波,至少在某些情况下,量子和经典通道之间的波长分离范围很广。我们设想IEQNET通过展示地铁尺度量子通信任务,例如纠缠分布和量子状态传送,以帮助开发健壮和实用的量子网络。
The Illinois Express Quantum Network (IEQNET) is a program to realize metropolitan scale quantum networking over deployed optical fiber using currently available technology. IEQNET consists of multiple sites that are geographically dispersed in the Chicago metropolitan area. Each site has one or more quantum nodes (Q-nodes) representing the communication parties in a quantum network. Q-nodes generate or measure quantum signals such as entangled photons and communicate the measurement results via standard, classical signals and conventional networking processes. The entangled photons in IEQNET nodes are generated at multiple wavelengths, and are selectively distributed to the desired users via transparent optical switches. Here we describe the network architecture of IEQNET, including the Internet-inspired layered hierarchy that leverages software-defined networking (SDN) technology to perform traditional wavelength routing and assignment between the Q-nodes. Specifically, SDN decouples the control and data planes, with the control plane being entirely implemented in the classical domain. We also discuss the IEQNET processes that address issues associated with synchronization, calibration, network monitoring, and scheduling. An important goal of IEQNET is to demonstrate the extent to which the control plane classical signals can co-propagate with the data plane quantum signals in the same fiber lines (quantum-classical signal "coexistence"). This goal is furthered by the use of tunable narrow-band optical filtering at the receivers and, at least in some cases, a wide wavelength separation between the quantum and classical channels. We envision IEQNET to aid in developing robust and practical quantum networks by demonstrating metro-scale quantum communication tasks such as entanglement distribution and quantum-state teleportation.